

PFAS Remediation:

The Role of Engineered Nanoporous Materials

Dr. Radha K Motkuri

Sr. Principal Chemical Engineer/Scientist Pacific Northwest National Laboratory Richland, WA 99352, USA

Per- and Polyfluoroalkyl Substances (PFAS)

The Problem:

Organofluorine chemistry: The electron density is concentrated around the fluorine, leaving the carbon relatively electron-poor. This introduces ionic character to the bond through partial charges ($\mathbf{C}^{\delta +} - \mathbf{F}^{\delta -}$). The partial charges on the fluorine and carbon are attractive, contributing to the unusual bond strength of the **carbon-fluorine** bond.

- C-H: 413 kJ/mol; C-F: 441 kJ/mol
- Each fluorine brings more stability

O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308-319

- Unlocking ways to break the bond barrier
- Advancements are needed to find effective ways.

Per- and polyfluoroalkyl substances (PFAS), a group of 4,000+ environmentally stable and biopersistent anthropogenic compounds found in firefighting foam and many other products

Per- and Polyfluoroalkyl Substances (PFAS)

THE SPREAD OF TOXIC PFAS POLLUTION SITES

https://www.ewg.org/research/update-mapping-expanding-pfas-crisis

- Sorbent based approach is an efficient method for PFAS remediation
- A fundamental understanding of the guest PFAS and the host SORBENT is crucial for efficient remediation
- Development of Advanced Engineered Nanoporous Sorbents

PFAS Remediation Requirements

A unique database of nanoporous materials, including MOFs, COFs, zeolites, inorganic materials, and hierarchical porous carbon materials towards various fluorocarbons was developed

Fluorocarbon Adsorption in Advanced sorbents

A unique database of nanoporous materials including MOFs, COFs, zeolites, inorganic materials, and hierarchical porous carbon materials towards various fluorocarbons was developed

PNNL Advanced Nanomaterials Development

Pore engineering and C-F interactions

- Tuning the porosity (micro and meso) for capture at low and high concentrations;
- Recyclability of the nanoporous sorbent material
- Affinity and pore-filling
- Revealed the coordination of fluorine (e.g., CH2F in C2 fluorocarbon) to the open metal centers at low pressures/concentrations (C-F----M)
- These interactions provide insight into the affinity and pore-filling mechanisms.
- The tools helped to probe and understand the adsorption mechanisms of CF3-CF2H in advanced nanoporous MOFs

PNNL Advanced Nanomaterials Development

Pore functionalization and Defects for C-F interactions

- Fluorocarbon adsorption affinity (in terms of mass loading and isosteric heat of adsorption)
- Optimizing the capture by introducing the defects
- Defect Engineering in COFs and tuning towards the C-F----Pi interactions for improved sorption capacities
- Pore morphology and functionalization
- Overview of C-F interactions with advanced sorbents
- Advanced characterization tools for C-F----M and C-F---Pi interactions
- Supporting molecular modeling studies
- These interactions provide insight into the affinity and pore-filling mechanisms.
- Recycling the sorbent

PFAS Remediation Advances

Capture/Adsorption

- Advanced sorbent developed with tunable pore structures, morphologies, and functionalities developed.
- high surface area, sorbents for large sorption capacities
- Structure property correlation
- Host-guest interaction
- Selectivity for shorter chains/longer chains;
- Scalable sorbent synthesis
- Gas-phase capture of PFAS

Destruction

- Preliminary studies on thermocatalytic destruction and enzymatic destruction
- Combining capture and destruction
- Gaseous phase sorption of short-chain PFAS for incineration

Detection/Sensing

- Electrical impedance-based sensor
- *in situ* method
- Short turnaround times (~hours vs days current)
- Inexpensive compared to traditional methods
- Detection limits are low (in the ppt range)
- Currently, PNNL is working on improving accuracy and precision

Ö

PFAS capture by Advanced sorbents

- Cr-MIL-101 and Fe-MIL-101: Trimeric Cr/Fe³⁺ octahedral clusters interconnected by terephthalic acid linkers
- Fe-MIL-100: Trimeric Fe³⁺ octahedral clusters interconnected by trimesic acid linkers
- PFOS solution contacted with sorbent
 - ☐ PNNL-designed MOF sorbents compared with commercial GAC
- ❖ PFOS concentration periodically monitored using ¹⁹F nuclear magnetic resonance (NMR)

PFAS capture by Advanced sorbents

Fe-MIL-101

Time (hour)

(b)

- Measure decay in bulk PFOS concentration (i.e., sorption kinetics for 10mM PFOS) for each sorbent
- Fe-MIL-101 has slower sorption rates than Cr-MIL-101
- Activated carbon shows negligible sorption
- Characterization tools, TEM and XPS revealed the sorption

Activated carbon

Time (hour)

PFOS remediation

- Developed and processed the MOF material in the engineering form (granules) on a gram scale.
- PFOS sorption tests were performed by flowing a known concentration of PFOS solution in tap water through a tube packed with MOF granules.
- Triplicate samples were collected from the outlet, and PFOS concentration was tested using LC-MS/MS at PNNL.
- The preliminary testing of PFOS at low concentrations (10 ppb) in tap water showed a decent performance in PFAS removal of up to 65% from the water within 24h.
- The saturation was not reached even after 8 days after flowing 60-liter solution, indicating more optimization is required.
- Further studies are required to optimize and understand sorption for such industrial-scale applications.

PFOS (10 ppb) sorption results in Tap water under a flow system using Cr-MIL-101 over 8 days (60-liter).

Fluorophilic Sorbent Development (PNNL)

All the sorbent materials were synthesized, characterized, and tested.

Pacific Northwest

Capture from water in ppm, concentrations using ¹⁹F NMR

- Sorption of various PFAS molecules in ppm from DI water and analysis using
 19F NMR
- Comparison of sorption capacities using commercial GAC

Fluorophilic Sorbent Development (PNNL)

All the sorbent materials were synthesized, characterized, and tested.

PFOS and PFOA capture in various advanced engineered sorbents

Various PFAS molecules captured in FMOF-1 and comparison with GAC

- Capture from DI water in ppm concentrations and testing/analysis using ¹⁹F NMR
- Stock solutions are freshly prepared, and sorption was performed

Catalytic hydrothermal PFAS destruction

¹⁹F NMR spectra of PFOS solution upon stock, (—) effluent post hydrothermal treatment with the MOFs and NaOH.

- Thermal catalytic degradation approaches were investigated for complete mineralization of PFAS loaded in engineered sorbents,
- Initial optimization studies were done with the C-8 chained PFOS and PFOA, respectively.
- Various amendments (NaOH, Na₂S₂O₃, Na₂S₂O₈, Na₂CO₃, H₂O₂) were studied.
- The S₂O₈²⁻ contacted solution showed a ~70% PFOS degradation.
- The reactions were monitored using ¹⁹F liquid NMR spectroscopy on the supernatant solutions where Fe-MIL-101 demonstrated the highest amount of mineralization with NaOH amendment.
- More optimization studies are required.

Thank you

June 2024

PNNLPFAS Sensor Technology

PFAS SENSOR

Figure. Actual Chip with the EIS Set-up

- Microfluidic channel sandwiched by non-planar interdigitated microelectrode array (NPμIDE)
- High-density packing of receptors (MOF) in the microfluidic channel
- Impedance spectroscopy used for the detection of PFOS capture
- Detection and measurement of PFAS compounds, including PFOS, PFOA, PFBS, PFBA, **PFHxS**
- Measures ultra-low PFOS levels in ng/L (ppt) ranges
- Currently, PNNL is working on improving accuracy and precision

Common Techniques	Limit of
for PFAS Analysis	Detection
LC-MS/MS	~1 ng/L
TOF MS	1-10 ng/L
Ex situ IC-MS	1-10 pg/L
PIGE	~10 nmol/cm ²
NMR	10 μg/L
TOP	1-10 ng/L
Reported	
electrochemical	25 ng/L
techniques	
PNNL lab-on-a-chip	
electrochemical	TBD
technique	